An Optimal Multi-Vector Iterative Algorithm in a Krylov Subspace for Solving the Ill-Posed Linear Inverse Problems

نویسنده

  • Chein-Shan Liu
چکیده

An optimal m-vector descent iterative algorithm in a Krylov subspace is developed, of which the m weighting parameters are optimized from a properly defined objective function to accelerate the convergence rate in solving an ill-posed linear problem. The optimal multi-vector iterative algorithm (OMVIA) is convergent fast and accurate, which is verified by numerical tests of several linear inverse problems, including the backward heat conduction problem, the heat source identification problem, the inverse Cauchy problem, and the external force recovery problem. Because the OMVIA has a good filtering effect, the numerical results recovered are quite smooth with small error, even under a large noise up to 10%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double Optimal Regularization Algorithms for Solving Ill-Posed Linear Problems under Large Noise

A double optimal solution of an n-dimensional system of linear equations Ax = b has been derived in an affine m-dimensional Krylov subspace with m n. We further develop a double optimal iterative algorithm (DOIA), with the descent direction z being solved from the residual equation Az = r0 by using its double optimal solution, to solve ill-posed linear problem under large noise. The DOIA is pro...

متن کامل

Greedy Tikhonov regularization for large linear ill-posed problems

Several numerical methods for the solution of large linear ill-posed problems combine Tikhonov regularization with an iterative method based on partial Lanczos bidiagonalization of the operator. This paper discusses the determination of the regularization parameter and the dimension of the Krylov subspace for this kind of methods. A method that requires a Krylov subspace of minimal dimension is...

متن کامل

Solving Ill-Posed Cauchy Problems by a Krylov Subspace Method

We study the numerical solution of a Cauchy problem for a self-adjoint elliptic partial differential equation uzz − Lu = 0 in three space dimensions (x, y, z) , where the domain is cylindrical in z. Cauchy data are given on the lower boundary and the boundary values on the upper boundary is sought. The problem is severely illposed. The formal solution is written as a hyperbolic cosine function ...

متن کامل

Compact Linear Operators and Krylov Subspace Methods

This thesis deals with linear ill-posed problems related to compact operators, and iterative Krylov subspace methods for solving discretized versions of these. Linear compact operators in infinite dimensional Hilbert spaces will be investigated and several results on the singular values and eigenvalues for such will be presented. A large subset of linear compact operators consists of integral o...

متن کامل

GGMRES: A GMRES--type algorithm for solving singular linear equations with index one

In this paper, an algorithm based on the Drazin generalized conjugate residual (DGMRES) algorithm is proposed for computing the group-inverse solution of singular linear equations with index one. Numerical experiments show that the resulting group-inverse solution is reasonably accurate and its computation time is significantly less than that of group-inverse solution obtained by the DGMRES alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013